Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 6(4): txac112, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36196229

ABSTRACT

The objectives were to assess the effects of dietary Sweet Bran (Cargill Corn Milling, Blair, NE) on performance and feeding behavior of feedlot steers and determine if terminal implant pen sorting affects performance, feeding behavior, and liver abscess (LA) rate. Two hundred sixteen Angus-cross steers (253 ± 18 kg) were stratified by body weight (BW) to 36 pens. From d 0 to 60, diets contained 40% Sweet Bran (SWBR) or 25% modified distiller's grains and 15% dry rolled corn (MOD; n = 18 pens/treatment). On d 60, steers began transition within treatments to finishing diets containing 25% Sweet Bran or 25% modified distiller's grains (MDGS). On d 111, half of the pens for each dietary treatment were re-stratified by BW to pens (SORT) while the other half were returned to original pens (NOSORT; n = 9 pens/treatment). Steer BW and pen dry matter intake (DMI) were recorded monthly. Rate of feed disappearance was determined on d 5/6, 53/54, 104/105, and 117/118. Pen was the experimental unit for all analyses. The model included the fixed effect of diet for all pre-sort analyses; post-sort analyses included the fixed effects of diet, sort, and the interaction and the random effects of pen and the interaction of diet and pen. On d 60, SWBR had greater BW than MOD (P = 0.05), and SWBR had a greater average daily gain (ADG) from d 0 to 60 (P = 0.05). Though there were no differences after d 28, SWBR had greater DMI d 0 to 28 (P = 0.05). From d 60 to 88, SWBR tended to have lesser ADG than MOD (P = 0.09). Post-sort (d 111 to 196), SWBR tended to have lesser ADG than MOD (P = 0.06), and SORT had a greater rate of feed disappearance than NOSORT (d 117/118; P = 0.01); there were no differences on other dates (Diet: P ≥ 0.38). For final BW, there was a tendency for MOD to be greater than SWBR, and SORT tended to be greater than NOSORT (Diet: P = 0.06; Sort: P = 0.10). Pre- and post-sort ruminal pH had no treatment by day differences (P ≥ 0.77). LA incidence averaged 25%, though rate was not affected by diet, sorting, or the interaction (P ≥ 0.16). Overall, there were no dietary differences in feed disappearance rates, though SORT steers had greater rate of feed disappearance than NOSORT steers on d 117/118. Nominal differences in feeding behavior were noted and including Sweet Bran in the diet was beneficial in the growing period as cattle adjusted to the feedlot.

2.
J Anim Sci ; 100(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35226738

ABSTRACT

The objective of these experiments was to assess the effects of food and water deprivation and transit duration on the behavior of beef feedlot steers. In Experiment 1, 36 Angus-cross steers (353 ± 10 kg) were stratified to 6 pens and assigned one of three treatments (n = 12 steers per treatment): control (CON; stayed in home pens with ad libitum access to feed and water), deprived (DEPR; stayed in home pens but deprived of feed and water for 18 h), or transported (TRANS; subjected to 18-h transit event and returned to home pens). In Experiment 2, 60 Angus-cross steers (398 ± 5 kg; 6 steers per pen) were transported either 8 (8H) or 18 (18H) h. Four 8H pens (n = 24 steers) and six 18H pens (n = 36 steers) were used for behavioral analysis. In both experiments, the time to eat, drink, and lay down was recorded for each steer upon return to home pens. Total pen displacements from the feed bunk were also assessed for the 2 h following feed access in both experiments. Data were analyzed using Proc Mixed of SAS 9.4, with treatment as a fixed effect. Steer was the experimental unit for behavioral activities, while pen was the experimental unit for bunk displacements. Displacements were analyzed as repeated measures with the repeated variable of time. In Experiment 1, the time to eat and drink was similar across treatments (P ≥ 0.17). However, TRANS laid down in 16.5 min while DEPR did not lay down until 70.5 min post-arrival to pen (P < 0.01). Deprived steers had greater bunk displacements in the first 70 min post-feed access than CON or TRANS, though displacements among treatments from 100 to 120 min post-feed access were similar (treatment × time: P = 0.02). In Experiment 2, both 8H and 18H steers laid down approximately 25 min post-home pen arrival (P = 0.14). There was no effect of transit duration or duration by time on bunk displacements (P ≥ 0.20), though displacements were greater from 0 to 20 min than from 20 to 30 min post-feed access (time: P = 0.04). Steers that were deprived of feed and water were highly motivated to access those resources, while transported steers prioritized laying down. Producers should consider these priorities when preparing to receive cattle from a long transit event.


Because of the segmentation of the cattle industry, cattle are transported at least once during their lives. The objective of these two studies was to determine if transportation, feed and water deprivation, and/or transit duration changed the behavior of feedlot steers. The first study found steers transported for 18 h preferred to lay down instead of competing for food, unlike steers that were deprived of food and water for 18 h. Bunk displacements were also increased in steers deprived of food and water, indicating increased aggression. In the second study examining effects of transit duration (8 vs. 18 h), steers from both treatments laid down within 25 min of arrival back to the home pens. There were no differences in the frequency of bunk displacements between treatments. Producers should consider the increased motivation for cattle to lay down after transportation and the increased aggression at the feed bunk in food-deprived cattle when developing post-arrival management strategies.


Subject(s)
Animal Feed , Cattle Diseases , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Time Factors , Water Deprivation
3.
J Anim Sci ; 99(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34698836

ABSTRACT

This study examined the effects of injectable vitamin C (VC) before transport and duration of transit on feedlot performance, inflammation, and muscle fatigue in cattle. One hundred thirty-two Angus-cross steers (393 ± 4 kg) were stratified by body weight (BW) to a 2 × 2 factorial of intramuscular injection (INJ; 20 mL/steer): VC (250 mg sodium ascorbate/mL) or saline (SAL) and road transit duration (DUR): 18 h (18-h; 1,770 km) or 8 h (8-h; 727 km). On day 0, steers were weighed and given INJ of VC or SAL immediately before transport. Upon return (day 1), BW and blood were collected before steers returned to pens equipped with GrowSafe bunks. Steers were weighed on days 0, 1, 7, 15, 30, 31, 54, and 55. Data were analyzed via ProcMixed of SAS (experimental unit = steer; 32 to 34 steers/treatment) with fixed effects of INJ, DUR, and the interaction. Blood was collected on days -5, 1, 2, 3, and 7 (n = 9 steers/treatment); blood parameters were analyzed as repeated measures with the repeated effect of day. Area under the curve (AUC) for plasma ferric reducing antioxidant power (FRAP) was calculated using R. Final BW was greater for 8 h compared to 18 h (P = 0.05) with no effect of INJ or interaction (P ≥ 0.51). Dry matter intake (DMI) from days 1 to 7 was greater for VC-8, intermediate for VC-18 and SAL-18, and least for SAL-8 (P = 0.02). Overall, DMI tended to be greatest for SAL-18, intermediate for VC-18 and VC-8, and least for SAL-8 (P = 0.08). Days 7 to 31 gain:feed (G:F) was greatest for VC-18 compared to other treatments (INJ × DUR, P = 0.05), and there was no effect of treatment on overall G:F (P ≥ 0. 19). There was no INJ or INJ × DAY (P ≥ 0.17) effect on serum lactate, haptoglobin, or non-esterified fatty acid. However, these blood parameters were greater on day 1 for 18 h compared to 8 h, and both treatments returned to near baseline by day 3 (DUR × DAY, P < 0.01). Plasma ascorbate concentrations on day 1 were greater for VC compared to SAL and returned to baseline by day 2 (INJ × DAY, P < 0.01). Plasma FRAP AUC from days -5 to 3 was greatest for VC-18, intermediate for VC-8 and SAL-8, and least for SAL-18 (INJ × DAY, P = 0.02). This suggests an antioxidant prior to long-haul transit positively influenced antioxidant capacity; however, VC did not improve overall post-transit performance. Although longer transit duration increased indicators of muscle fatigue and inflammation, post-transit performance was not appreciably different between transit durations.


Subject(s)
Ascorbic Acid , Cattle Diseases , Animal Feed/analysis , Animals , Cattle , Cattle Diseases/drug therapy , Diet , Dietary Supplements , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/veterinary , Muscle Fatigue
4.
J Anim Sci ; 99(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34448471

ABSTRACT

To assess the efficacy of bis-glycinate bound Zn, 36 crossbred wethers (34 ± 2 kg) were sorted by body weight into three groups and stagger started on a Zn-deficient diet (18 mg Zn/kg dry matter [DM]; 22.5% neutral detergent fiber [NDF]) for 45 d prior to a 15-d metabolism period (10 d adaptation and 5 d collection). On day 46, lambs were randomly assigned to dietary treatments (four lambs treatment-1group-1): no supplemental Zn (CON) or 15 mg supplemental Zn/kg DM (ZINC) as Zn sulfate (ZS) or bis-glycinate (GLY; Plexomin Zn, Phytobiotics). Blood was collected from all lambs on days 1, 44, 56, and 61. Liver, jejunum, and longissimus dorsi samples were collected after euthanasia on day 61. Gene expression was determined via quantitative real-time polymerase chain reaction. Data were analyzed using ProcMixed of SAS (experimental unit = lamb; fixed effects = treatment, group, and breed) and contrast statements assessed the effects of supplemental Zn concentration (ZINC vs. CON) and source (GLY vs. ZS). After 15 d of Zn supplementation, plasma Zn concentrations were greater for ZINC vs. CON and GLY vs. ZS (P ≤ 0.01); tissue Zn concentrations were unaffected (P ≥ 0.27). Liver Cu concentrations were lesser for ZINC vs. CON (P = 0.03). Longissimus dorsi Mn concentrations were greater for ZINC vs. CON (P = 0.05) and tended to be lesser for GLY vs. ZS (P = 0.09). Digestibility of DM, organic matter (OM), and NDF was lesser for ZINC vs. CON (P ≤ 0.05); acid detergent fiber digestibility tended to be greater for GLY vs. ZS (P = 0.06). Nitrogen retention (g/d) tended to be greater for GLY vs. ZS (P = 0.10), and N apparent absorption was lesser for ZINC vs. CON (P = 0.02). Zinc intake, fecal output, retention, and apparent absorption were greater for ZINC vs. CON (P ≤ 0.01). Apparent absorption of Zn was -5.1%, 12.8%, and 15.0% for CON, ZS, and GLY, respectively. Nitrogen and Zn retention and apparent absorption were not correlated for CON (P ≥ 0.14) but were positively correlated for ZINC (retention: P = 0.02, r = 0.52; apparent absorption: P < 0.01, r = 0.73). Intestinal expression of Zn transporter ZIP4 was lesser for ZINC vs. CON (P = 0.02). Liver expression of metallothionein-1 (MT1) tended to be greater for GLY vs. ZS (P = 0.07). Although Zn apparent absorption did not differ between sources (P = 0.71), differences in post-absorptive metabolism may be responsible for greater plasma Zn concentrations and liver MT1 expression for GLY-supplemented lambs, suggesting improved bioavailability of GLY relative to ZS.


Subject(s)
Trace Elements , Zinc , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Male , Sheep , Zinc Sulfate
SELECTION OF CITATIONS
SEARCH DETAIL
...